Assessing Drought, Flood, and High Temperature Disasters during Sugarcane Growth Stages in Southern China

Author:

Yao Pei,Qian LongORCID,Wang Zhaolin,Meng Huayue,Ju XueliangORCID

Abstract

As a globally important sugarcane-producing region, Southern China (SC) is severely affected by various agrometeorological disasters. This study aimed to comprehensively assess multiple sugarcane agrometeorological disasters with regards to sugarcane yield in SC. The standardized precipitation evapotranspiration index and the heat degree-days were employed to characterize drought, flood, and high temperature (HT) during sugarcane growth stages in three provinces in SC in the period 1970–2020. Moreover, the relationships between sugarcane climatic yield and disaster intensities were investigated. The results indicated that the most recent decade witnessed the most intensive sugarcane agrometeorological disasters; sugarcane drought and HT intensities significantly (p < 0.05) increased in one and two provinces, respectively. Central and western SC was most drought-prone, while eastern SC was most flood-prone; sugarcane HT was concentrated in southwestern SC. The mature stage exhibited the greatest monthly intensities of drought and flood; the most HT-prone growth stage varied with provinces. The relationships between drought/flood intensity and sugarcane climatic yield were significant in seven districts; the yield-reducing effect of sugarcane flood was more obvious than that of drought. In conclusion, this study provides references for agrometeorological disaster risk reduction for sugarcane in SC.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference53 articles.

1. Implications of climate change for the sugarcane industry;Linnenluecke;WIREs Clim. Chang.,2018

2. Climate change and sugarcane production: Potential impact and mitigation strategies;Zhao;Int. J. Agon.,2015

3. Climate change scenarios and their impact on water Balance and Sugarcane Yield in Southern Brazil;Santos;Sugar Tech,2014

4. Climate changes and technological advances: Impacts on sugarcane productivity in tropical southern Braizl;Sentelhas;Sci. Agric.,2009

5. The impact of climate change on the Australian sugarcane industry;Linnenluecke;J. Clean. Prod.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3