Farmland Soil Block Identification and Distribution Statistics Based on Deep Learning

Author:

Liu Lichao,Bi Quanpeng,Liang Jing,Li Zhaodong,Wang Weiwei,Zheng Quan

Abstract

Soil block distribution is one of the important indexes to evaluate the tillage performance of agricultural machinery. The traditional manual screening methods have the problems of low efficiency and damaging the original surface of the soil. This study proposes a statistical method of farmland soil block distribution based on deep learning. This method combines the adaptive learning rate and squeeze-and-excitation networks channel attention mechanism based on the original Mask-RCNN and uses the improved model to identify, segment and distribute statistics of the farmland soil blocks. Firstly, the influence of different learning rates and an improved Mask-RCNN algorithm model on training results were analyzed. Secondly, the effectiveness of the model in soil block identification and size measurement was analyzed. Finally, the identified soil blocks were classified accordingly, and the scale problem of soil block distribution after removing edge soil blocks was analyzed. The results show that with the decrease of learning rate, the loss value of model training decreases and the prediction accuracy of model is improved. The average precision value of the improved model increased by 25.29 %, and the recall value increased by 8.92%. The correlation coefficient of the maximum diameter measured by manual measurement and the maximum diameter measured by model algorithm was 0.99, which verifies the feasibility of the algorithm model. The prediction error of the model is the smallest when the camera height is 40 cm. Large-scale detection of soil block size in an experimental field in Hefei, Anhui, with an average confidence of over 97%. At the same time, the soil block is effectively classified according to the set classification standard. This study can provide an effective method for the accurate classification of soil block size and can provide a quantitative basis for the control of farmland cultivation intensity.

Funder

Universities Natural Science Research Project of Anhui Province

Collaborative Innovation Project of Colleges and Universities of Anhui Province

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3