Author:
Liu Lichao,Bi Quanpeng,Liang Jing,Li Zhaodong,Wang Weiwei,Zheng Quan
Abstract
Soil block distribution is one of the important indexes to evaluate the tillage performance of agricultural machinery. The traditional manual screening methods have the problems of low efficiency and damaging the original surface of the soil. This study proposes a statistical method of farmland soil block distribution based on deep learning. This method combines the adaptive learning rate and squeeze-and-excitation networks channel attention mechanism based on the original Mask-RCNN and uses the improved model to identify, segment and distribute statistics of the farmland soil blocks. Firstly, the influence of different learning rates and an improved Mask-RCNN algorithm model on training results were analyzed. Secondly, the effectiveness of the model in soil block identification and size measurement was analyzed. Finally, the identified soil blocks were classified accordingly, and the scale problem of soil block distribution after removing edge soil blocks was analyzed. The results show that with the decrease of learning rate, the loss value of model training decreases and the prediction accuracy of model is improved. The average precision value of the improved model increased by 25.29 %, and the recall value increased by 8.92%. The correlation coefficient of the maximum diameter measured by manual measurement and the maximum diameter measured by model algorithm was 0.99, which verifies the feasibility of the algorithm model. The prediction error of the model is the smallest when the camera height is 40 cm. Large-scale detection of soil block size in an experimental field in Hefei, Anhui, with an average confidence of over 97%. At the same time, the soil block is effectively classified according to the set classification standard. This study can provide an effective method for the accurate classification of soil block size and can provide a quantitative basis for the control of farmland cultivation intensity.
Funder
Universities Natural Science Research Project of Anhui Province
Collaborative Innovation Project of Colleges and Universities of Anhui Province
Subject
Plant Science,Agronomy and Crop Science,Food Science
Reference30 articles.
1. Application of Machine Vision for Classification of Soil Aggregate Size;Ajdadi;Soil Tillage Res.,2016
2. Seedling Emergence as Influenced by Aggregate Size, Bulk Density, and Penetration Resistance of the Seedbed;Nasr;Soil Tillage Res.,1995
3. Improved Digital Image-Based Assessment of Soil Aggregate Size by Applying Convolutional Neural Networks;Alirezazadeh;Comput. Electron. Agric.,2021
4. Automatic Segmentation of Crop/Background Based on Luminance Partition Correction and Adaptive Threshold;Liao;IEEE Access,2020
5. Liu, L., Mei, T., Niu, R., Wang, J., Liu, Y., and Chu, S. (2016). RBF-Based Monocular Vision Navigation for Small Vehicles in Narrow Space below Maize Canopy. Appl. Sci., 6.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献