Improved YOLOv8-Seg Network for Instance Segmentation of Healthy and Diseased Tomato Plants in the Growth Stage

Author:

Yue Xiang1ORCID,Qi Kai1,Na Xinyi1ORCID,Zhang Yang1ORCID,Liu Yanhua1ORCID,Liu Cuihong1

Affiliation:

1. College of Engineering, Shenyang Agricultural University, Shenyang 110866, China

Abstract

The spread of infections and rot are crucial factors in the decrease in tomato production. Accurately segmenting the affected tomatoes in real-time can prevent the spread of illnesses. However, environmental factors and surface features can affect tomato segmentation accuracy. This study suggests an improved YOLOv8s-Seg network to perform real-time and effective segmentation of tomato fruit, surface color, and surface features. The feature fusion capability of the algorithm was improved by replacing the C2f module with the RepBlock module (stacked by RepConv), adding SimConv convolution (using the ReLU function instead of the SiLU function as the activation function) before two upsampling in the feature fusion network, and replacing the remaining conventional convolution with SimConv. The F1 score was 88.7%, which was 1.0%, 2.8%, 0.8%, and 1.1% higher than that of the YOLOv8s-Seg algorithm, YOLOv5s-Seg algorithm, YOLOv7-Seg algorithm, and Mask RCNN algorithm, respectively. Meanwhile, the segment mean average precision (segment mAP@0.5) was 92.2%, which was 2.4%, 3.2%, 1.8%, and 0.7% higher than that of the YOLOv8s-Seg algorithm, YOLOv5s-Seg algorithm, YOLOv7-Seg algorithm, and Mask RCNN algorithm. The algorithm can perform real-time instance segmentation of tomatoes with an inference time of 3.5 ms. This approach provides technical support for tomato health monitoring and intelligent harvesting.

Funder

outh Program of the Liaoning Education Department

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3