Sustainable Bioconversion of Wetland Plant Biomass for Pleurotus ostreatus var. florida Cultivation: Studies on Proximate and Biochemical Characterization

Author:

Elbagory MohssenORCID,El-Nahrawy Sahar,Omara Alaa El-DeinORCID,Eid Ebrahem M.ORCID,Bachheti Archana,Kumar PankajORCID,Abou Fayssal SamiORCID,Adelodun BashirORCID,Bachheti Rakesh KumarORCID,Kumar Pankaj,Mioč Boro,Kumar VinodORCID,Širić IvanORCID

Abstract

The abundant biomass growth of aquatic macrophytes in wetlands is one of the major concerns affecting their residing biota. Moreover, the biomass degenerates within the wetlands, thereby causing a remixing of nutrients and emission of greenhouse gases. Therefore, it is crucial to find sustainable methods to utilize the biomass of aquatic macrophytes devoid of environmental concerns. The present study investigates the utilization of the biomass of three aquatic macrophytes, including the lake sedge (CL: Carex lacustris Willd.), water hyacinth (EC: Eichhornia crassipes Mart. Solms), and sacred lotus (NL: Nelumbo nucifera Gaertn.) to produce oyster (Pleurotus ostreatus var. florida) mushrooms. For this purpose, different combinations of wheat straw (WS: as control) and macrophyte’s biomass (WH) such as control (100% WH), CL50 (50% WH + 50% CL), CL100 (100% CL), EC50 (50% WH + 50% EC), EC100 (100% EC), NL50 (50% WH + 50% NL), and NL100 (100% NL) were used for P. florida cultivation under controlled laboratory conditions. The results showed that all selected combinations of wheat straw and macrophyte biomass supported the spawning and growth of P. florida. In particular, the maximum significant (p < 0.05) growth, yield, bioefficiency, proximate, and biochemical parameters were reported using the WH substrate followed by CL, NL, and EC biomass, which corresponds to the reduction efficiency of the substrate parameters. Therefore, the findings of this study reveal that the biomass of selected aquatic macrophytes can be effectively utilized for sustainable mushroom cultivation while minimizing the risk associated with their self-degeneration.

Funder

King Khalid University

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3