Abstract
Aneuploids are valuable materials of genetic diversity for genetic analysis and improvement in diverse plant species, which can be propagated mainly via in vitro culture methods. However, somaclonal variation is common in tissue culture-derived plants including euploid caladium. In the present study, the genetic stability of in vitro-propagated plants from the leaf cultures of two types of caladium (Caladium × hortulanum Birdsey) aneuploids obtained previously was analyzed morphologically, cytologically, and molecularly. Out of the randomly selected 23 and 8 plants regenerated from the diploid aneuploid SVT9 (2n = 2x − 2 = 28) and the tetraploid aneuploid SVT14 (2n = 4x − 6 = 54), respectively, 5 plants from the SVT9 and 3 plants from the SVT14 exhibited morphological differences from their corresponding parent. Stomatal analysis indicated that both the SVT9-derived variants and the SVT14-originated plants showed significant differences in stomatal guard cell length and width. In addition, the variants from the SVT14 were observed to have rounder and thicker leaves with larger stomatal guard cells and significantly reduced stomatal density compared with the regenerants of the SVT9. Amongst the established plants from the SVT9, two morphological variants containing 3.14–3.58% less mean fluorescence intensity (MFI) lost one chromosome, and four variants containing 4.55–11.02% more MFI gained one or two chromosomes. As for the plants regenerated from the SVT14, one variant with significantly higher MFI gained two chromosomes and three plants having significantly lower MFI resulted in losing four chromosomes. Three, out of the twelve, simple sequence repeat (SSR) markers identified DNA band profile changes in four variants from the SVT9, whereas no polymorphism was detected among the SVT14 and its regenerants. These results indicated that a relatively high frequency of somaclonal variation occurred in the in vitro-propagated plants from caladium aneuploids, especially for the tetraploid aneuploid caladium. Newly produced aneuploid plants are highly valuable germplasm for future genetic improvement and research in caladium.
Funder
Scientific Research Project of Hubei Education Department
Subject
Plant Science,Agronomy and Crop Science,Food Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献