Somatic Embryogenesis Induction and Genetic Stability Assessment of Plants Regenerated from Immature Seeds of Akebia trifoliate (Thunb.) Koidz

Author:

Zhang Yiming1,Cao Yunmei1,Wang Yida1,Cai Xiaodong1

Affiliation:

1. College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China

Abstract

Akebia trifoliata is a perennial woody plant with considerable potential in nutrition, food, and health, and the production of seedlings with high quality is critical for its economic utilization. Plant regeneration through somatic embryogenesis is a powerful alternative for propagating many plant species. In this study, a simple and practicable protocol was developed for plant regeneration from immature seeds of A. trifoliata via somatic embryogenesis, and the genetic stability of regenerated plants was also assessed. In the somatic embryo (SE) induction stage, the highest frequency of somatic embryogenesis (35.2%) was observed on the WPM medium containing 1.0 mg L−1 of thidiazuron (TDZ) and 1.0 mg L−1 of 6-benzyladenine (6-BA). The concentration of 6-BA was optimized at 1.0 mg L−1 for the proliferation and maturation of the induced SEs, and the combination of 2.0 mg L−1 of indole-3-butyric acid (IBA) and 0.5 mg L−1 of TDZ was the most responsive for root development and plant growth. The leaf morphological characteristics greatly varied among the established plants, and they could be grouped into three plant types, namely the normal type, Type Ι, and Type ΙΙ. Remarkable differences in the number, size, shape, and color of the leaflets were observed among the three types, while their ploidy level was the same via flow cytometry analysis. The Type ΙΙ and the Type Ι plants had the highest and the lowest net photosynthesis rate, transpiration rate, and stomatal conductance among the three groups, respectively, and both had a smaller size of stomatal guard cells than the normal type. Simple sequence repeat (SSR) analysis detected that 41 bands (43.62%) were different from those observed in the wild, indicating a high degree of polymorphism between the regenerants and their donor parent. The obtained plants might hold potential for future genetic improvement and breeding in A. trifoliata, and the established regeneration protocol might serve as a foundation for in vitro propagation and germplasm preservation of this crop.

Funder

the Key Research and Development Project of Hubei Province

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3