Temporal Effects of Biochar and Dairy Manure on Physicochemical Properties of Podzol: Case from a Silage-Corn Production Trial in Boreal Climate

Author:

Vermooten MarliORCID,Nadeem MuhammadORCID,Cheema Mumtaz,Thomas RaymondORCID,Galagedara Lakshman

Abstract

A field experiment was conducted to evaluate the effects of biochar and dairy manure (DM) on physicochemical properties of podzolic soils, as well as to establish the relationships between selected physicochemical properties and soil electrical conductivity (EC) in a silage-corn production system. Nutrient requirements of the crop were met through different nutrient sources considering soil nutrient status, nutrient availability from DM (DM, DM + biochar) and regional crop nutrient recommendations. Experimental treatments included control, inorganic nitrogen (IN), IN + biochar, IN + DM, and IN + DM + biochar. DM was applied at 30,000 L ha−1, whereas biochar was applied at 20 Mg ha−1 and mixed within the top 20 cm of the soil. Disturbed soil samples as well as time domain reflectometry (TDR) measurements were collected from treatment plots on four field days. Results showed no significant (p > 0.05) treatment effects on soil pH and cation exchange capacity (CEC) within each field day. However, significant temporal effects were recorded for pH, EC, apparent electrical conductivity (ECa) and electrical conductivity of the soil solution (ECw). Soil depth (0–10 cm and 10–20 cm) had no significant effect on treatments. Significant positive correlations were recorded for EC with soil organic carbon and CEC (ECa, ECw 0–10 cm, & 10–20 cm, p = 0.000). Correlation results show that ECa measurements as a proxy to investigate the variability of key soil properties over large areas, but further investigation between ECa data and soil properties should be carried out to address uncertainties associated in predicting these properties.

Funder

Research and Development Corporation of Newfoundland and Labrador

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3