Impact of Genetic Improvements of Rice on Its Water Use and Effects of Climate Variability in Egypt

Author:

Mehana Mohamed,Abdelrahman MohamedORCID,Emadeldin Yasmin,Rohila Jai S.,Karthikeyan Raghupathy

Abstract

Developing and disseminating resilient rice cultivars with increased productivity is a key solution to the problem of limited natural resources such as land and water. We investigated trends in rice cultivation areas and the overall production in Egypt between 2000 and 2018. This study identified rice cultivars that showed potential for high productivity when cultivated under limited irrigation. The results indicated that there were significant annual reductions in both the rice-cultivated area (−1.7% per year) and the production (−1.9% per year) during the study period. Among the commonly cultivated varieties, Sakha101 showed the highest land unit productivity, while Sakha102 showed the highest water unit productivity. The impact of deploying new cultivars was analyzed by substitution scenarios. The results showed that substituting cultivars Giza179 and Sakha107 has the potential to increase land productivity by 15.8% and 22.6%, respectively. This could result in 0.8 million m3 in water savings compared to 2018 water consumption. Long-term impacts of climate variability on the minimum and maximum temperature, relative humidity, and average precipitation during on- and off-season for rice productivity were also analyzed using an autoregressive distributed lag (ARDL) model. The results indicated that climate variability has an overall negative impact on rice productivity. Specifically, minimum temperature and on- and off-season precipitation had major long-term impacts, while higher relative humidity had a pronounced short-term impact on rice yields. The study revealed that short-duration cultivars with higher yields provided greater net savings in irrigation resources. These analyses are critical to guide the development of strategic management plans to mitigate short- and long-term climate effects on overall rice production and for developing and deploying improved rice varieties for sustainable rice production.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3