Identifying New Resistance to Cassava Mosaic Disease and Validating Markers for the CMD2 Locus

Author:

Thuy Cu Thi Le,Lopez-Lavalle Luis Augusto BecerraORCID,Vu Nguyen Anh,Hy Nguyen Huu,Nhan Pham Thi,Ceballos HernanORCID,Newby JonathanORCID,Tung Nguyen Ba,Hien Nguyen Trong,Tuan Le Ngoc,Hung Nguyen,Hanh Nguyen Thi,Trang Do Thi,Ha Pham Thi Thu,Ham Le Huy,Hoi Pham Xuan,Quynh Do Thi Nhu,Rabbi Ismail Y.,Kulakow Peter A.,Zhang XiaofeiORCID

Abstract

Cassava (Manihot esculenta Crantz) is a crucial staple crop, and provides carbohydrate energy to more than half a billion people in the tropics. Cassava mosaic disease (CMD) is the most important disease of cassava in Africa. Since Sri Lanka Cassava Mosaic Virus (SLCMV) was first reported in South East Asia in 2015, establishing sustainable solutions to CMD has become a top priority for the cassava program at the International Center for Tropical Agriculture (CIAT) and its partners. In the present study, we screened two populations for CMD resistance: VNM142, 142 clones collected from farms throughout Vietnam, and CIAT102, 102 clones resistant to CMD or mites, which were introduced from CIAT. High broad-sense heritability was observed in all the trials (>0.80). From the population VNM142, eight clones showed high CMD resistance with CMD severity scores less than 2.0. Two resistant clones had the same DNA fingerprinting with the accessions CR63 (PER262 or TAI9) and KM57 (VNM8) in the genebank, respectively. To our knowledge, this is the first report of CMD resistance in the genebank at CIAT. We also used the two populations to validate the CMD markers S12_7926132 and S14_4626854. Both markers explained 51% of the population variance in the segregating population CIAT102, but only 11% in the diverse population VNM142. Thus, we concluded that the two CMD markers could not be used to select for CMD resistance in diverse populations, but could predict the CMD resistance in segregating populations when the susceptible parents do not have resistant marker alleles and the resistance of the CMD2 donors is confirmed.

Funder

Bill and Melinda Gates Foundation

CGIAR Research Program on Roots, Tubers and Bananas

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3