Metabolic profiles of Sri Lankan cassava mosaic virus-infected and healthy cassava (Manihot esculenta Crantz) cultivars with tolerance and susceptibility phenotypes

Author:

Chaowongdee Somruthai,Malichan Srihunsa,Pongpamorn Pornkanok,Paemanee Atchara,Siriwan Wanwisa

Abstract

Abstract Background Cassava mosaic disease (CMD) of cassava (Manihot esculenta Crantz) has expanded across many continents. Sri Lankan cassava mosaic virus (SLCMV; family Geminiviridae), which is the predominant cause of CMD in Thailand, has caused agricultural and economic damage in many Southeast Asia countries such as Vietnam, Loas, and Cambodia. The recent SLCMV epidemic in Thailand was commonly found in cassava plantations. Current understanding of plant–virus interactions for SLCMV and cassava is limited. Accordingly, this study explored the metabolic profiles of SLCMV-infected and healthy groups of tolerant (TME3 and KU50) and susceptible (R11) cultivars of cassava. Findings from the study may help to improve cassava breeding, particularly when combined with future transcriptomic and proteomic research. Results SLCMV-infected and healthy leaves were subjected to metabolite extraction followed by ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS/MS). The resulting data were analyzed using Compound Discoverer software, the mzCloud, mzVault, and ChemSpider databases, and published literature. Of the 85 differential compounds (SLCMV-infected vs healthy groups), 54 were differential compounds in all three cultivars. These compounds were analyzed using principal component analysis (PCA), hierarchical clustering dendrogram analysis, heatmap analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation. Chlorogenic acid, DL-carnitine, neochlorogenic acid, (E)-aconitic acid, and ascorbyl glucoside were differentially expressed only in TME3 and KU50, with chlorogenic acid, (E)-aconitic acid, and neochlorogenic acid being downregulated in both SLCMV-infected TME3 and KU50, DL-carnitine being upregulated in both SLCMV-infected TME3 and KU50, and ascorbyl glucoside being downregulated in SLCMV-infected TME3 but upregulated in SLCMV-infected KU50. Furthermore, 7-hydroxycoumarine was differentially expressed only in TME3 and R11, while quercitrin, guanine, N-acetylornithine, uridine, vorinostat, sucrose, and lotaustralin were differentially expressed only in KU50 and R11. Conclusions Metabolic profiling of three cassava landrace cultivars (TME3, KU50, and R11) was performed after SLCMV infection and the profiles were compared with those of healthy samples. Certain differential compounds (SLCMV-infected vs healthy groups) in different cultivars of cassava may be involved in plant–virus interactions and could underlie the tolerance and susceptible responses in this important crop.

Funder

Kasetsart University through the Graduated School Fellowship Program

Kasetsart University Research and Development

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference72 articles.

1. Gogoi A, Kaldis A, Dasgupta I, Borah BK, Voloudakis A. Sense- and antisense-mediated resistance against Sri Lankan cassava mosaic virus (SLCMV) in Nicotiana benthamiana. Biol Plant. 2019;63(1):455–64.

2. Alabi OJ, Kumar PL, Naidu RA. Cassava mosaic disease: A curse to food security in Sub-Saharan Africa. APSnet Features, IITA Journal Articles. 2011; 1-17. https://doi.org/10.1094/APSnetFeature-2011-0701.

3. Food and Agriculture Organization of the United Nations. The current status of SLCMV in Thailand. 2019. https://www.ippc.int/en/countries/thailand/pestreports/2019/03/the-current-status-of-slcmv-in-thailand/. Accessed 10 Oct 2022.

4. Simoes AJG, Hidalgo CA. The Economic Complexity Observatory: an analytical tool for understanding the dynamics of economic development. In: Workshops at the Twenty-Fifth AAAI Conference on Artificial Intelligence. 2011.

5. Peeramon. The hygiene propagative material and tolerance cultivars for cassava cultivation. The Department of Agriculture in Thailand. https://doaenews.doae.go.th/archives/11979. Accessed 10 Oct 2022.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3