Effect of Aeration on Blockage Regularity and Microbial Diversity of Blockage Substance in Drip Irrigation Emitter

Author:

Li PengORCID,Li HaoORCID,Li Jinshan,Huang Xiuqiao,Liu Yang,Jiang Yue

Abstract

Aerated drip irrigation is rendered as a new water-saving irrigation method based on drip irrigation technology, which is endowed with the function of effectively alleviating the problem of rhizosphere hypoxia in crop soil, enhancing the utilization rate of water and fertilizer; as a result, it improves the harvest and quality of crops. However, clogged emitters are important indexes, among others, that pose an influence to the service effect and life duration of drip irrigation systems. At present, the working principle and mechanism of the influence of air feeding on the blockage of drip irrigation emitters remain unclear. Therefore, based on the two gas filling methods of the micro/nano bubble generator and Venturi injector, the dynamic change process for the average flow ratio of an air-filled drip irrigation emitter was studied by the method of emitter plugging test. 16S rRNA sequencing was used to analyze the microbial diversity of the emitter plugs. The results show that the air injection can pose influence on the clogging procedure of drip irrigation emitters, and more importantly, it makes the distribution of blocked emitters more uniform, thus improving the uniformity of the system. Different filling methods have different effects on the blockage of the emitter. Among them, the blockage time of drip irrigation system under the micro/nano aerated drip irrigation (MAI) mode is 5.73 times longer than that under unaerated drip irrigation (UVI), and similarly, Venturi gas drip irrigation (VAI) is close to that under UVI. The filling method changed the microbial diversity of the blockage in the emitter. Among them, the number of operational taxonomic unit (OTU) unique to MAI was 2.1 times that of UVI, and the number of OTU unique to VAI was 1.3 times that of UVI. Meanwhile, gas addition will inhibit the growth of Nitrospirae and Proteobacteria microbial communities and promote the growth of Firmicutes and Actinobacteria microbial communities. Furthermore, the increase in microbial extracellular polymer in the plugging material of the emitter was inhibited and the plugging process of the emitter was slowed down. The research results are of great significance in the disclosure of the clogging mechanism of drip irrigation emitter and constructing the green, anti-blockage technology of aerated drip irrigation.

Funder

the National Natural Science Fund of China

the Scientific and Technological Project of Henan Province

the Central Public-interest Scientific Institution Basal Research Fund

Science and Technology Major Project of Henan Province

the Basic Research Project of the Farmland Irrigation Research Institute (FIRI) of the Chinese Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3