Using UAV Multispectral Remote Sensing with Appropriate Spatial Resolution and Machine Learning to Monitor Wheat Scab

Author:

Zhu Wenjing,Feng Zhankang,Dai Shiyuan,Zhang Pingping,Wei Xinhua

Abstract

This study took the wheat grown in the experimental area of Jiangsu Academy of Agricultural Sciences as the research object and used the unmanned aerial vehicle (UAV) to carry the Rededge-MX multispectral camera to obtain the wheat scab image with different spatial resolutions (1.44 cm, 2.11 cm, 3.47 cm, 4.96 cm, 6.34 cm, and 7.67 cm). The vegetation indexes (VIs) and texture features (TFs) extracted from the UAV multispectral image were screened for high correlation with the disease index (DI) to investigate the impact of spatial resolution on the accuracy of UAV multispectral wheat scab monitoring. Finally, the best spatial resolution for UAV multispectral monitoring of wheat scab was determined to be 3.47 cm, and then, based on the 3.47 cm best resolution image, VIs and TFs were used as input variables, and three algorithms of partial least squares regression (PLSR), support vector machine regression (SVR), and back propagation neural network (BPNN) was used to establish wheat scab, monitoring models. The findings demonstrated that the VIs and TFs fusion model was more appropriate for monitoring wheat scabs by UAV remote sensing and had better fitting and monitoring accuracy than the single data source monitoring model during the wheat filling period. The SVR algorithm has the best monitoring effect in the multi-source data fusion model (VIs and TFs). The training set was identified as 0.81, 4.27, and 1.88 for the coefficient of determination (R2), root mean square error (RMSE), and relative percent deviation (RPD). The verification set was identified as 0.83, 3.35, and 2.72 for R2, RMSE, and RPD. In conclusion, the results of this study provide a scheme for the field crop diseases in the UAV monitoring area, especially for the classification and variable application of wheat scabs by near-earth remote sensing monitoring.

Funder

National Natural Science Foundation of China

Jiangsu Agricultural Science and Technology Innovation Fund

Superior disciplines in Jiangsu Province

Innovation Training Plan of Jiangsu University

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3