Development of Spectral Disease Indices for Southern Corn Rust Detection and Severity Classification

Author:

Meng RanORCID,Lv Zhengang,Yan Jianbing,Chen Gengshen,Zhao FengORCID,Zeng Linglin,Xu Binyuan

Abstract

Southern Corn Rust (SCR) is one of the most destructive diseases in corn production, significantly affecting corn quality and yields globally. Field-based fast, nondestructive diagnosis of SCR is critical for smart agriculture applications to reduce pesticide use and ensure food safety. The development of spectral disease indices (SDIs), based on in situ leaf reflectance spectra, has proven to be an effective method in detecting plant diseases in the field. However, little is known about leaf spectral signatures that can assist in the accurate diagnosis of SCR, and no SDIs-based model has been reported for the field-based SCR monitoring. Here, to address those issues, we developed SDIs-based monitoring models to detect SCR-infected leaves and classify SCR damage severity. In detail, we first collected in situ leaf reflectance spectra (350–2500 nm) of healthy and infected corn plants with three severity levels (light, medium, and severe) using a portable spectrometer. Then, the RELIEF-F algorithm was performed to select the most discriminative features (wavelengths) and two band normalized differences for developing SDIs (i.e., health index and severity index) in SCR detection and severity classification, respectively. The leaf reflectance spectra, most sensitive to SCR detection and severity classification, were found in the 572 nm, 766 nm, and 1445 nm wavelength and 575 nm, 640 nm, and 1670 nm wavelength, respectively. These spectral features were associated with leaf pigment and leaf water content. Finally, by employing a support vector machine (SVM), the performances of developed SCR-SDIs were assessed and compared with 38 stress-related vegetation indices (VIs) identified in the literature. The SDIs-based models developed in this study achieved an overall accuracy of 87% and 70% in SCR detection and severity classification, 1.1% and 8.3% higher than the other best VIs-based model under study, respectively. Our results thus suggest that the SCR-SDIs is a promising tool for fast, nondestructive diagnosis of SCR in the field over large areas. To our knowledge, this study represents one of the first few efforts to provide a theoretical basis for remote sensing of SCR at field and larger scales. With the increasing use of unmanned aerial vehicles (UAVs) with hyperspectral measurement capability, more studies should be conducted to expand our developed SCR-SDIs for SCR monitoring at different study sites and growing stages in the future.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference65 articles.

1. General Resistance in Maize to Southern Rust (Puccinia polysora Underw.)

2. Analysis of the main occurrence characteristics and causes of the southern corn rust in China in 2015;Liu;China Plant Prot.,2016

3. A report about the occurrence area of southern corn rust and the resistance of the corn cultivars in china;Liu;Crops,2009

4. Corn Yield Loss Estimates Due to Diseases in the United States and Ontario, Canada from 2012 to 2015

5. Recent advances in sensing plant diseases for precision crop protection

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3