Agri-Environment Atmospheric Real-Time Monitoring Technology Based on Drone and Light Scattering

Author:

Liu Yuan,He Xun,Wang Wanzhang,Zhu Chenhui,Jian Ruibo,Chen Jinfan

Abstract

The emission of particulate matter (PM) from agricultural activities, such as concentrated animal feeding, straw combustion, and mechanized harvest, is a hot issue in the sustainable development of agriculture, which has attracted more and more attention from government departments and researchers. However, the research on the transport of particulate matter in the agri-environment still lacks flexible and efficient measurement methods to obtain real-time and accurate spatial distribution data. The objective of our study is to produce a new intelligent platform for agri-environment atmospheric monitoring with high mobility, temporal and spatial resolution, and remote data transmission function to overcome the shortcomings of traditional atmospheric particulate matter monitoring stations, such as small particle size range, immovability, and high cost. Through the light scattering sensor, microcontroller, and wireless data transmission device assembled on the high-mobility drone, the platform could measure the mass concentration of PM2.5, PM10, and TSP at different spatial points in the agri-environment and transmit the measurement data to the receiving device on the ground through three modes: CLOUD, TCP, and UDP. We also developed monitoring software based on the Android platform, which could complete the connection of device and real-time monitoring of measurement data on the ground. Compared with stationary measurement devices, the biggest advantage of our mobile monitoring system is that it has the ability to measure the concentration of TSP and the vertical distribution of PM, which is very important for the research of agricultural environmental particulate matter emission characteristics. After the sensor and communication performance experiments, the sensors had high consistency in the overall change trend, and the communication accuracy rate was high. We carried out a flight measurement comparison experiment at the Wenhua Road Campus of Henan Agricultural University, and the measurement data were highly consistent with the data from the national monitoring stations. We also conducted an agri-environmental atmospheric measurement experiment in Muzhai Village and obtained the vertical distribution data of PM concentration at the nearby measuring point when the harvester was working. The results showed that after the harvester worked for a period of time, the PM2.5, PM10, and TSP concentrations reached the maximum at the altitude of 20 m at the measurement point, which were 80, 198, and 384 μg/m3, respectively, 2.64~3.10 times the particle concentration in the environment before the harvester began to work. Our new platform had high mobility, sensitive reading, and stable communication during the experiment, and had high application value in agricultural environmental monitoring.

Funder

China Agriculture Research System

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3