Detection of Parthenium Weed (Parthenium hysterophorus L.) and Its Growth Stages Using Artificial Intelligence

Author:

Costello Benjamin,Osunkoya Olusegun O.ORCID,Sandino JuanORCID,Marinic William,Trotter Peter,Shi Boyang,Gonzalez FelipeORCID,Dhileepan Kunjithapatham

Abstract

Parthenium weed (Parthenium hysterophorus L. (Asteraceae)), native to the Americas, is in the top 100 most invasive plant species in the world. In Australia, it is an annual weed (herb/shrub) of national significance, especially in the state of Queensland where it has infested both agricultural and conservation lands, including riparian corridors. Effective control strategies for this weed (pasture management, biological control, and herbicide usage) require populations to be detected and mapped. However, the mapping is made difficult due to varying nature of the infested landscapes (e.g., uneven terrain). This paper proposes a novel method to detect and map parthenium populations in simulated pastoral environments using Red-Green-Blue (RGB) and/or hyperspectral imagery aided by artificial intelligence. Two datasets were collected in a control environment using a series of parthenium and naturally co-occurring, non-parthenium (monocot) plants. RGB images were processed with a YOLOv4 Convolutional Neural Network (CNN) implementation, achieving an overall accuracy of 95% for detection, and 86% for classification of flowering and non-flowering stages of the weed. An XGBoost classifier was used for the pixel classification of the hyperspectral dataset—achieving a classification accuracy of 99% for each parthenium weed growth stage class; all materials received a discernible colour mask. When parthenium and non-parthenium plants were artificially combined in various permutations, the pixel classification accuracy was 99% for each parthenium and non-parthenium class, again with all materials receiving an accurate and discernible colour mask. Performance metrics indicate that our proposed processing pipeline can be used in the preliminary design of parthenium weed detection strategies, and can be extended for automated processing of collected RGB and hyperspectral airborne unmanned aerial vehicle (UAV) data. The findings also demonstrate the potential for images collected in a controlled, glasshouse environment to be used in the preliminary design of invasive weed detection strategies in the field.

Funder

The Queensland Department of Agriculture

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3