Abstract
The most common harvesting method of Lycium barbarum L. (L. barbarum) is manual harvesting, resulting in low efficiency and high cost. Meanwhile, the efficiency of vibration harvesting, which is considered an efficient mechanical harvesting method, can be significantly improved if the optimized resonance frequency of the shrub can be obtained. To vibration harvest fruit efficiently, a 3D model of the shrub was established based on measurements of the shape parameters, and material mechanics models of the branches were established based on physical tests. The modal analysis of the shrub based on finite element method (FEM) simulation was performed to obtain the range of resonance frequency, and the modal experiment of the shrub using acceleration sensors and an impact hammer was conducted to obtain the accurate resonance frequency. Based on the results of the modal analysis and experiment, the optimized resonance frequency was determined to be 2 Hz. The field experiment showed that the fruit fell off when the branches were vibrated at this frequency. The results provide the design basis for the efficient vibration harvesting of L. barbarum.
Funder
National Key Research and Development Program of China
China Scholarship Council
Subject
Plant Science,Agronomy and Crop Science,Food Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献