Abstract
The effects of rumen buffer agents on ruminal fermentation parameters and bacterial community composition were determined using in vitro and in vivo experiments in three rumen-cannulated, high-concentrate fed Holstein Friesian dairy cows. Experiment 1 in vitro treatments included bentonite, calcium carbonate, calcium oxide, sodium bicarbonate, sodium sesquicarbonate, and processed coral, and unbuffered samples served as the control. Experiment 2 in vitro treatments were based on the formulation of various combinations of the buffer agents used in Experiment 1. Combinations were selected for the in vivo study based on their buffering ability. Calcium oxide, sodium bicarbonate, and sodium sesquicarbonate stabilized the ruminal pH and improved in vitro rumen fermentation. The combined buffer agents had a significant effect on pH, buffering capacity, total gas, and total volatile fatty acids. Firmicutes and Bacteroidetes were the dominant phyla in both treatments and the control. Ruminococcus and Prevotella were found to be the dominant genera. Ruminococcus bromii was predominant in the treatment group. Prevotella jejuni was more abundant in the control group compared to the treatment group, in which its abundance was very low. Ruminococcus flavefaciens and Intestinimonas butyriciproducens gradually increased in abundance as cows received treatment. Overall, a high-concentrate diet administered to cows induced adverse changes in ruminal pH; however, buffer supplementation enhanced ruminal fermentation characteristics and altered bacterial community, which could contribute to preventing ruminal acidosis.
Subject
Plant Science,Agronomy and Crop Science,Food Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献