Effects of Long-Term Straw Management and Potassium Fertilization on Crop Yield, Soil Properties, and Microbial Community in a Rice–Oilseed Rape Rotation

Author:

Li JifuORCID,Gan Guoyu,Chen Xi,Zou Jialong

Abstract

The present study aims to assess the influences of long-term crop straw returning and recommended potassium fertilization on the dynamic change in rice and oilseed rape yield, soil properties, bacterial and fungal alpha diversity, and community composition in a rice–oilseed rape system. A long-term (2011–2020) field experiment was carried out in a selected paddy soil farmland in Jianghan Plain, central China. There were four treatments with three replications: NP, NPK, NPS, and NPKS, where nitrogen (N), phosphate (P), potassium (K), and (S) denote N fertilizer, P fertilizer, K fertilizer, and crop straw, respectively. Results showed that long-term K fertilization and crop straw returning could increase the crop yield at varying degrees for ten years. Compared with the NP treatment, the long-term crop straw incorporation with K fertilizer (NPKS treatment) was found to have the best effect, and the yield rates increased by 23.0% and 20.5% for rice and oilseed rape, respectively. The application of NPK fertilizer for ten years decreased the bacterial and fungal alpha diversity and the relative abundance of dominant bacterial and fungal taxa, whereas continuous straw incorporation had a contradictory effect. NPKS treatment significantly increased the relative abundance of some copiotrophic bacteria (Firmicutes, Gemmatimonadetes, and Proteobacteria) and fungi (Ascomycota). Available K, soil organic matter, dissolved organic carbon, and easily oxidized organic carbon were closely related to alterations in the composition of the dominant bacterial community; easily oxidized organic carbon, dissolved organic carbon, and slowly available K were significantly correlated with the fungal community. We conclude that long-term crop straw returning to the field accompanied with K fertilizer should be employed in rice-growing regions to achieve not only higher crop yield but also the increase in soil active organic carbon and available K content and the improvement of the biological quality of farmland.

Funder

Key Laboratory of Fertilizer Utilization, Ministry of Agriculture and Rural Affairs, China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3