Conventional versus Nano Calcium Forms on Peanut Production under Sandy Soil Conditions

Author:

Hamza Mohamed,Abbas MohamedORCID,Abd Elrahman Asmaa,Helal Mohamed,Shahba MohamedORCID

Abstract

Abiotic stresses in sandy soil, which include saline water, saline soil, and lack of nutrients, affect the productivity and quality traits of peanuts (Arachis hypogaea L). Elemental calcium (Ca2+) is necessary for the proper development of peanut pods. This work aimed at comparing conventional Ca and nano-Ca form effects on peanut production and quality traits. Two randomized complete block field experiments were conducted in the 2015 and 2016 seasons. Treatments were control, gypsum plus calcium nitrate Ca(NO3)2, Ca(NO3)2, and chelated calcium, as well as 100, 75, 50, 25, and 12.5% of Ca(NO3)2 doses in a nano form. The results indicated that the treatment of gypsum plus conventional CaNO3 achieved the highest yield and best quality traits, followed by the Ca(NO3)2 and 100% nano Ca(NO3)2 treatments. The treatments of the control, gypsum, and 12.5% nano Ca(NO3)2 had the lowest effect on peanut performance. The conventional treatment of gypsum plus Ca(NO3)2 resulted in the greatest seed yield (1.6 ton ha−1), oil yield (700.3 kg ha−1), and protein yield (380.1 kg ha−1). Peanuts may benefit from Ca2+ better by using gypsum as the soil application and calcium nitrate as the foliar application to prevent disorders of Ca2+ deficiency under sandy soil conditions.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference67 articles.

1. Groundnut quality characteristics;Jambunathan,1991

2. Groundnut improvement: use of genetic and genomic tools

3. Nano fertilizers and nano sensors—An attempt for developing smart agriculture;Rameshaiah;Int. J. Eng. Res. Gen. Sci.,2015

4. Integration of Photosynthetic Protein Molecular Complexes in Solid-State Electronic Devices

5. ZnO Nanoparticles Induced Synthesis of Polysaccharides and Phosphatases by Aspergillus Fungi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3