Mitigation of Drought Stress Effects on Alfalfa (Medicago sativa L.) Callus through CaO Nanoparticles and Graphene Oxide in Tissue Culture Conditions

Author:

Yazıcılar Büşra1,Nadaroğlu Hayrunnisa2,Alaylı Azize3,Nadar Muthukumar4,Gedikli Semin2,Bezirganoglu ismail5ORCID

Affiliation:

1. Erzurum Technical University: Erzurum Teknik Universitesi

2. Ataturk University: Ataturk Universitesi

3. Sakarya Uygulamali Bilimler Universitesi

4. KL Deemed to be University

5. Erzurum Technical University

Abstract

Abstract Drought stress poses a significant threat to fertile soils worldwide, triggering profound physiological, biochemical, and molecular changes in plants that adversely impact agricultural productivity. This study explores the potential of nanotechnology, specifically Calcium Oxide Nanoparticles (CaO NPs) and Graphene Oxide (GO), to ameliorate the negative effects of drought stress on two distinct alfalfa ecotypes. Seeds from Erzurum and Konya regions were regenerated in the Murashige and Skoog (MS) medium, and ensuing callus formation was induced through 2,4-D and Kinetin. The callus samples underwent a one-month treatment with varying concentrations of mannitol (50 and 100 mM), CaO NPs, and GO (0.5 and 1.5 ppm). Results revealed a decrease in dry/wet weight with increasing mannitol concentration, contrasting with an increase in weight under CaO NPs and GO treatment. Proline, DNSA, MDA, and H2O2 exhibited proportional increases under drought stress, while CaO NPs and GO treatments mitigated these effects. Physiological and biochemical analyses identified optimal conditions for Erzurum as 50 mM mannitol/2 CaO NPs/0.5 ppm GO, and for Konya as 50 mM mannitol/0.5 ppm GO. Gene expression analysis indicated up-regulation of mtr-miR159 and mtr-miR393 with heightened drought stress, with down-regulation observed in CaO NPs and GO treatments. Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM) confirmed Ca2+ accumulation in alfalfa tissues. In conclusion, CaO NPs and GO treatments exhibited a significant reduction in the adverse effects of drought stress on alfalfa callus under tissue culture conditions. This research sheds light on the potential of nanotechnological interventions to alleviate the impact of environmental stressors on crop plants, opening avenues for sustainable agriculture in the face of changing climatic conditions. Further investigations are warranted to elucidate the underlying mechanisms and scalability of these findings for field applications.

Publisher

Research Square Platform LLC

Reference71 articles.

1. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling;Abe H;Plant Cell,2003

2. miRNA biogenesis: a dynamic pathway;Achkar NP;Trends Plant Sci,2016

3. Responses of proline, lipid peroxidation and antioxidative enzymes in two varieties of Pisum sativum L. under salt stress;Ahmad P;Int J Plant Prod,2012

4. Allen RS, Li J, Stahle MI, Dubroué A, Gubler F, Millar AA (2007) Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proceedings of the National Academy of Sciences 104(41):16371–16376

5. Allen RS, Li J, Stahle MI, Dubroué A, Gubler F, Millar AA (2007) Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proceedings of the National Academy of Sciences 104(41):16371–16376

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3