Abstract
This paper describes the physical and tensile properties of corn bracts during a whole harvest period by using two corn cultivars, aiming to realize efficient peeling with minimum energy performance and decrease the incidence of ear damage. The value range and change rule of tensile properties were obtained by combining mechanical experiments and numerical statistics. Meanwhile, mathematical models were established for tensile properties depending on bract moisture content and bract thickness. The experimental results show that the tensile properties of leaf blade were affected by the orientation between pulling force and longitudinal vein, and that parallel orientation was greater than perpendicular. Further, the tensile properties of leaf sheaths depended on the angle between pulling force and natural growth direction of the bract in the following order: 0° > 90° > 180°. A larger pulling force angle can improve the probability of bract fracturing at the root of leaf sheaths, which helps reduce bract residue on the peduncle. In addition, the fracture mechanisms of leaf blades and sheaths were expressed from physiological and morphological perspectives. The experimental results are believed to be able to provide theoretical guidance by which to design and optimize corn-peeling devices.
Subject
Plant Science,Agronomy and Crop Science,Food Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献