Research on the Biomechanical Characteristics of Salted Wakame (Undaria pinnatifida)

Author:

Zhang Hanbing123,Huang Weirong1,Kang Huanyu1,Wu Shuqiao1,Li Xiuchen123

Affiliation:

1. College of Mechanical and Power Engineering, Dalian Ocean University, Dalian 116023, China

2. Key Laboratory of Environment Controlled Aquaculture Ministry of Education, Dalian Ocean University, Dalian 116023, China

3. R&D Center of Fisheries Equipment and Engineering, Dalian 116023, China

Abstract

At present, there has been no mechanized equipment designed for the separation of the leaves from the stems of wakame in China, and the stem–leaf separation is mainly completed by manual work, which suffers from problems such as low efficiency, high cost, and poor quality. To develop mechanized stem–leaf separation equipment of wakame, it is necessary to have a preliminary understanding of the biomechanical characteristics of wakame. In this study, we adopted an electronic universal testing machine, a texture tester, and a friction tester to investigate the mechanical characteristics of the stems and leaves of salted wakame. Analysis was performed to clarify the effects of salted wakame thickness and loading speed on the tension, compression, shear, and separation mechanical properties as well as the effects of the loading speed, normal force, and contact material on the friction characteristics. As shown in the results, the average tensile strength, shear strength, and resilience of salted wakame stems were 2.27 MPa, 6.34 MPa and 0.27, respectively; the average tensile strength and shear strength of salted wakame leaves were 1.67 MPa and 2.93 MPa; the separation strength of the stems and leaves was 1.78 MPa, and the friction coefficient between salted wakame and stainless steel, silicone rubber, and vulcanized rubber was 0.38, 0.44 and 0.40 on average. In general, the increase in the loading rate, the shear strength, and the stem–leaf separation strength of salted wakame showed a downward trend, while the changes in the friction coefficient showed an upward trend, with no significant influence on the recovery and tensile strength. The tensile strength, resilience, shear strength, stem–leaf separation force, and strength increased as the thickness of the salted wakame improved. The friction coefficient of the salted wakame stems decreased with increasing the normal force, while the friction coefficient of the salted wakame leaves increased. In general, the increase in wakame thickness improved its mechanical properties, and the increase in the test loading rate led to the decrease in the mechanical properties of salted wakame. The research results in this paper can provide suggestions for the research and development of stem–leave separation equipment for saline salted wakame.

Funder

Project for Marine Economy Development in Liaoning Province

Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education

Scientific Research Fund of Liaoning Provincial Education Department

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3