Conservation Agriculture as a System to Enhance Ecosystem Services

Author:

Jayaraman SomasundaramORCID,Dang Yash P.ORCID,Naorem AnandkumarORCID,Page Kathryn L.,Dalal Ram C.ORCID

Abstract

Conservation agriculture (CA) is considered a sustainable practice with the potential to maintain or increase crop productivity and improve environmental quality and ecosystem services. It typically improves soil quality and water conservation; however, its effect on crop productivity is highly variable and dependent on local conditions/management. Crop residue retention plays a crucial role in CA and can help to improve overall soil health and ultimately crop productivity and sustainability. However, weed control, herbicide resistance, and weed shift under residue retained fields is a major challenge. Moreover, CA can increase water infiltration and reduce soil loss and runoff. This reduces the surface transport of nitrate and phosphorus from agricultural fields and the eutrophication of water bodies, although leaching of nitrate to groundwater can potentially increase. In addition, CA has been proposed as one of the components in climate-smart agriculture, owing to its reduced period to seed/plant next crop, reduced soil disturbance and low consumption of fossil fuels. Therefore, compared to the conventional intensive tillage, CA has a greater potential for soil C sequestration, favors higher soil biodiversity, lowers greenhouse gas emission, and can assist in mitigating climate change. However, not all experiments report a positive impact. The understanding and decoding the site-specific complexities of CA system is important and requires a multidisciplinary approach.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3