Low Light Alters the Photosynthesis Process in Cigar Tobacco via Modulation of the Chlorophyll Content, Chlorophyll Fluorescence, and Gene Expression

Author:

Wu Xiaoying,Khan RayyanORCID,Gao Huajun,Liu Haobao,Zhang Juan,Ma XinghuaORCID

Abstract

Shading or low light (LL) conditions are a key and necessary cultivation technique in cigar wrapper tobacco production. However, the effect of low light on the photosynthesis in cigar tobacco is not clear. Therefore, this study is designed to know the photosynthesis of cigar tobacco under different light intensities (T200, T100, and T50 μmol m−2 s−1). The results reveal that under low light, T50 especially improved the light interception and increased carbon utilization, as witnessed by a higher specific leaf area and lower specific leaf weight. Low light intensity caused better light interception and carbon utilization in cigar tobacco leaves, and thus thinner leaves are more able to use low light efficiently. The chlorophyll content is related to the photosynthesis process; thus, LL affected the photosynthesis process by lowering the chlorophyll content. Similarly, LL also altered the photosynthetic efficiency by lowering the QY_Lss, qP_Lss, and Rfd_Lss. Additionally, higher expression of Lhcb4.2, Lhcb6, PsbA, PsbB, and PsbD under low light, especially T50, shows that the PSII and antenna proteins complex efficiently utilized the absorbed energy for photosynthesis. Finally, the lower photosynthesis, particularly in T50, is attributed to the downregulation of genes related to NADPH production (petH) and the rubisco enzyme synthesis-related gene (rbcs) for CO2 fixation in the Calvin cycle. Overall, the results show that the photosynthesis is decreased under LL intensities which might be related to lower chlorophyll content and downregulation of petH and rbcs genes.

Funder

Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3