Response of Tomato Plants, Ailsa Craig and Carotenoid Mutant tangerine, to Simultaneous Treatment by Low Light and Low Temperature

Author:

Popova Antoaneta V.1,Stefanov Martin1ORCID,Mihailova Gergana2ORCID,Borisova Preslava1,Georgieva Katya2ORCID

Affiliation:

1. Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad, G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria

2. Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad, G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria

Abstract

Tomato (Solanum lycopersicum L.) plants, wild type Ailsa Craig, and carotenoid mutant tangerine that accumulates prolycopene instead of all-trans-lycopene were exposed to a combined treatment by low light and low temperature for 5 days. The ability of plants to recover from the stress after development for 3 days at control conditions was followed as well. The suffered oxidative stress was evaluated by the extent of pigment content, lipid peroxidation, membrane stability, and H2O2 generation. The level of MDA content under combined treatment in tangerine implies that the mutant demonstrates lower sensitivity to stress in comparison with Ailsa Craig. The oxidative protective strategy of plants was estimated by following the antioxidant and antiradical activity of phenolic metabolites, including anthocyanins, as well as the activities of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT). Presented results revealed that the oxidative stress was much stronger expressed after exposure of both types of plants to low light combined with low temperature compared to that after treatment with only low light. The most significant antioxidant protection was provided by phenolic substances, including anthocyanins. The lower sensitivity of tangerine plants to low light can be attributed to the higher activity of the antioxidant enzyme CAT.

Funder

Bulgarian Science Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3