Grassland Restoration at a Graded Ski Slope: Effects of Propagation Material and Fertilisation on Plant Cover and Vegetation

Author:

Scotton Michele

Abstract

The increasing anthropisation of mountain regions is a cause of soil degradation, which needs to be addressed. Conventional methods of ski slope revegetation often fail to stabilise the soil and recover natural vegetation. To test alternative methods to create a persistent, biodiversity-friendly plant cover, different sowing (site-adapted native propagation materials vs. forage cultivars vs. no sowing) and fertilisation treatments were compared over nine years at a graded ski slope. Because of the gravelly soil, the ninth-year plant cover was only 65%, which was sufficient to prevent erosion. All native propagation materials were equally efficient at recreating a semi-natural grassland. Except for Festuca rubra, the forage cultivars did not persist. However, native volunteer species from close natural ecosystems efficiently colonised plots sown with forage cultivars and plots that were not sown. This resulted in a lower plant cover but a high similarity to the surrounding vegetation. Fertilisation had a positive but transient effect on plant cover and a little negative effect on species richness. High-altitude sites with gravelly soils should be revegetated with native propagation materials. Using forage cultivars can attain a persistent plant cover only if the sown non-persistent cultivars are replaced by the species arriving from nearby surrounding vegetation.

Funder

Natural Park Paneveggio – Pale di San Martino

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference57 articles.

1. International Report on Snow & Mountain Tourism: Overview of the Key Industry Figures for Ski Resorts, 12th edition, 2020 http://www.vanat.ch/RM-world-report-2020.pdf

2. Sustainable Soil Management in Ski Areas: Threats and Challenges

3. Not all ski slopes are created equal: Disturbance intensity affects ecosystem properties

4. Revegetation of disturbed arctic sites: constraints and applications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3