Affiliation:
1. College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610103, China
Abstract
In general, decision makers in irrigation systems prioritize the cultivation of diverse crops to ensure sufficient food supply and maximize economic profit, while overlooking ecological resilience. This study proposes a novel reliable multi-objective framework designed to minimize disparities in water distribution between multi-crops, thereby addressing conflicts related to irrigation timing and distribution space. To assess the feasibility of the proposed model, a reliability evaluation technique is employed to examine the conflict ratio of the water distribution policy corresponding to constraints concerning the available water and the water allocated to various crops (C-value). Next, to evaluate the reliable optimal multi-objective model, we examined the disparity of water distribution among four crops—fodder, watermelon, wheat, and grape—cultivated in three sub-areas of the Zayandehroud watershed, a watershed experiencing water shortage in the center of the Iranian plateau. Subsequently, given the overlooking of water conservation policies, this study investigates the impact of alternative perspectives on the disparity of water distribution and the conflict domain. The final results indicate that grapes exhibit lower sensitivity to water consumption, whereas watermelon is the most sensitive. In terms of the conflict domain, the city of Lenjanat recorded the least sensitivity.
Funder
Ministry of Science and Technology of China
Scientific Research Foundation of Chengdu University of Information Technology