Enhancing Disparity in Water Distribution within Irrigation Systems Aimed at Improving the Conflict Domain under Alternative Perspectives: A Reliable Multi-Objective Framework

Author:

Mahdi Moudi1ORCID

Affiliation:

1. College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610103, China

Abstract

In general, decision makers in irrigation systems prioritize the cultivation of diverse crops to ensure sufficient food supply and maximize economic profit, while overlooking ecological resilience. This study proposes a novel reliable multi-objective framework designed to minimize disparities in water distribution between multi-crops, thereby addressing conflicts related to irrigation timing and distribution space. To assess the feasibility of the proposed model, a reliability evaluation technique is employed to examine the conflict ratio of the water distribution policy corresponding to constraints concerning the available water and the water allocated to various crops (C-value). Next, to evaluate the reliable optimal multi-objective model, we examined the disparity of water distribution among four crops—fodder, watermelon, wheat, and grape—cultivated in three sub-areas of the Zayandehroud watershed, a watershed experiencing water shortage in the center of the Iranian plateau. Subsequently, given the overlooking of water conservation policies, this study investigates the impact of alternative perspectives on the disparity of water distribution and the conflict domain. The final results indicate that grapes exhibit lower sensitivity to water consumption, whereas watermelon is the most sensitive. In terms of the conflict domain, the city of Lenjanat recorded the least sensitivity.

Funder

Ministry of Science and Technology of China

Scientific Research Foundation of Chengdu University of Information Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3