Identification of High Erucic Acid Brassica carinata Genotypes through Multi-Trait Stability Index

Author:

Tesfaye Misteru123ORCID,Feyissa Tileye2ORCID,Hailesilassie Teklehaimanot2,Mengistu Birhanu3ORCID,Kanagarajan Selvaraju1ORCID,Zhu Li-Hua1ORCID

Affiliation:

1. Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden

2. Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia

3. Holetta Agricultural Research Center, EIAR, Addis Ababa P.O. Box 2003, Ethiopia

Abstract

Brassica carinata is an important and native oilseed crop in Ethiopia. The seed oil from B.carinata attracts global attention for its various industrial applications, mainly due to its high erucic acid levels and its superior agronomic traits. Since the demand for high erucic acid from oilseed brassica has been increasing in the world market due to its wider applications in bio-industries, the breeding target of B. carinata has recently been focused on enhancing its erucic acid. Several high erucic acid B. carinata genotypes have been screened from the pre-breeding activities. Such genotypes, however, need to be tested for their stable performance, for their erucic acid level, and other desirable traits under different environments. The aim of this study was to identify high erucic acid B. carinata genotypes with stable performance in multiple desirable traits. Thirty-two B. carinata genotypes were grown in a randomized complete block design with three replications at three locations for two years. The genotypes were evaluated for nine desirable traits related to seed oil quality (erucic acid and oil content), seed yield, and other agronomic traits. The results showed that the proportion of genotype by environment interaction (GEI) was clearly observed in erucic acid, which led to a stability and mean performance analysis for selecting the most stable and best-performing genotypes for the desired traits. For such an analysis, we used the multi-trait stability index (MTSI) along with the weighted average of absolute score BLUPs (WAASB). As revealed from the MTSI, five genotypes (G13, G18, G10, G22 and G5) were identified as the most stable in erucic acid, oil content, seed yield, and other agronomic traits. The selected genotypes showed on average 45.7% erucic acid, 3185 kg ha−1 seed yield and 45.1% oil content with 4.3%, 25.8% and 6.9% positive selection gain, respectively. The negative selection gain of phenological traits and the plant height of the selected genotypes revealed their early maturity and their lower probability of being affected by lodging. Our findings demonstrated MTSI can be used to select high erucic acid B. carinata with a set of desirable traits, which would facilitate breeding efforts in developing novel and high erucic acid B. carinata varieties. Our results also showed that MTSI is an effective tool for selecting genotypes across different environments due to its unique ability to select multiple traits simultaneously.

Funder

Swedish International Development Cooperation Agency (Sida) and the Research and Training

Swedish University of Agricultural Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3