Ammonia Emissions and Building-Related Mitigation Strategies in Dairy Barns: A Review

Author:

Vitaliano Serena1ORCID,D’Urso Provvidenza Rita1ORCID,Arcidiacono Claudia1ORCID,Cascone Giovanni1

Affiliation:

1. Department of Agriculture, Food and Environment (Di3A), Building and Land Engineering Section, University of Catania, Via S. Sofia 100, 95123 Catania, Italy

Abstract

In this systematic review, the PRISMA method was applied to examine publications from the last two decades that have investigated the noxious gaseous emissions from dairy barns. The aim was to analyse the outcomes from literature studies estimating the quantities of polluting gases produced in dairy barns, with a specific focus on ammonia (NH3) emissions. Various studies, among those reviewed, have used mixed effects models, mass balance approaches and dispersion methods, revealing significant variability due to different experimental protocols and environmental contexts. Key challenges include the lack of standardised measurement techniques and the limited geographical coverage of research, particularly in climatically extreme regions. This review also explores proposed methods to reduce the associated effects through mitigation strategies. Estimation of NH3 emissions is significantly influenced by the complex interactions between several factors; including animal management practices, such as controlling animal behavioural activities; manure management, like utilising practices for floor manure removal; the type of structure housing the animals, whether it is naturally or mechanically ventilated; and environmental conditions, such as the effects of temperature, wind speed, relative humidity, and ventilation rate on NH3 release in the barn. These influential components have been considered by researchers and targeted mitigation strategies have been identified. Despite growing attention to the issue, gaps in the scientific literature were identified and discussed, particularly regarding the analysis of mitigation strategies and their long-term impacts (i.e., environmental, economic and productivity-wise). The purpose of this review is to help improve research into sustainable agricultural practices and technological innovations, which are fundamental to reducing NH3 emissions and improving air quality in agricultural environments.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3