Grazing weakens competitive interactions between active methanotrophs and nitrifiers modulating greenhouse-gas emissions in grassland soils

Author:

Pan Hong,Feng Haojie,Liu Yaowei,Lai Chun-Yu,Zhuge Yuping,Zhang Qichun,Tang Caixian,Di Hongjie,Jia ZhongjunORCID,Gubry-Rangin CécileORCID,Li YongORCID,Xu JianmingORCID

Abstract

AbstractGrassland soils serve as a biological sink and source of the potent greenhouse gases (GHG) methane (CH4) and nitrous oxide (N2O). The underlying mechanisms responsible for those GHG emissions, specifically, the relationships between methane- and ammonia-oxidizing microorganisms in grazed grassland soils are still poorly understood. Here, we characterized the effects of grazing on in situ GHG emissions and elucidated the putative relations between the active microbes involving in methane oxidation and nitrification activity in grassland soils. Grazing significantly decreases CH4 uptake while it increases N2O emissions basing on 14-month in situ measurement. DNA-based stable isotope probing (SIP) incubation experiment shows that grazing decreases both methane oxidation and nitrification processes and decreases the diversity of active methanotrophs and nitrifiers, and subsequently weakens the putative competition between active methanotrophs and nitrifiers in grassland soils. These results constitute a major advance in our understanding of putative relationships between methane- and ammonia-oxidizing microorganisms and subsequent effects on nitrification and methane oxidation, which contribute to a better prediction and modeling of future balance of GHG emissions and active microbial communities in grazed grassland ecosystems.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3