Influence of Rotor Cage Structural Parameters on the Classification Performance of a Straw Micro-Crusher Classifying Device: CFD and Machine Learning Approach

Author:

Fu Min1,Cao Zhong1,Zhan Mingyu1,Wang Yulong2,Chen Lei1

Affiliation:

1. College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China

2. College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China

Abstract

The rotor cage is a key component of the classifying device, and its structural parameters directly affect classification performance. To improve the classification performance of the straw micro-crusher classifying device, this paper proposes a CFD-ML-GA (Computational Fluid Dynamics-Machine Learning-Genetic Algorithm) method to quantitatively analyze the coupled effects of rotor cage structural parameters on classification performance. Firstly, CFD and orthogonal experimental methods are used to qualitatively investigate the effects of the number of blades, length of rotor blades, and blade installation angle on the classification performance. The conclusion obtained is that the blade installation angle exerts the greatest effect on classification performance, while the number of blades has the least effect. Subsequently, four machine learning algorithms are used to build a cut size prediction model, and, after comparison, the Random Forest Regression (RFR) model is selected. Finally, RFR is integrated with a Genetic Algorithm (GA) for quantitative parameter optimization. The quantitative analysis results of GA indicate that with 29 blades, a blade length of 232.8 mm, and a blade installation angle of 36.8°, the cut size decreases to 47.6 μm and the classifying sharpness index improves to 0.62. Compared with the optimal solution from the orthogonal experiment, the GA solution reduces the cut size by 9.33% and improves the classifying sharpness index by 9.68%. This validates the feasibility of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3