Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions

Author:

Maraveas Chrysanthos1ORCID,Karavas Christos-Spyridon1ORCID,Loukatos Dimitrios1ORCID,Bartzanas Thomas1ORCID,Arvanitis Konstantinos G.1ORCID,Symeonaki Eleni1

Affiliation:

1. Department of Natural Resources Development and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece

Abstract

Resource management in agriculture is considered a pivotal issue because greenhouse farming and agriculture-related activities generate about 10–29% of all global greenhouse gas emissions. The problem of high greenhouse gas emissions is still unresolved due to the rapid expansion of arable land to meet global food demand. The purpose of this systematic literature review was to generate new perspectives and insights regarding the development of resource management and optimized environments in greenhouses, thereby lowering energy requirements and CO2 emissions. This review sought to answer what technologies and inventions could be used to achieve zero greenhouse gas emissions through efficient energy-saving mechanisms while considering their technical and economic viability. The synthesis of the findings led to several themes which included energy-saving techniques for greenhouses, systems that reduced unfavorable external conditions and renewable energy systems. Other themes identified regarded energy storage systems, systems for managing conditions in greenhouses, carbon capture and storage, and factors influencing the performance of different technologies to enhance resource management and ensure zero carbon emissions. The findings also revealed various technologies used in the design of energy-saving techniques in greenhouses including proportional–integral–derivatives (PID), fuzzy, artificial neural networks, and other intelligent algorithms. Additionally, technologies that were a combination of these algorithms were also examined. The systems that reduced unfavorable external conditions included the use of insulation panels and intelligent shading systems. Greenhouse covers were also optimized by smart glass systems, sensors, Internet of Things (IoT), and Artificial Intelligence (AI) systems. Renewable energy systems included PV (solar) panels, wind turbines, and geothermal electricity. Some of the thermal energy storage systems widely studied in recent research included underground thermal energy storage (UTES) (for seasonal storage), phase-change materials (PCMs), and water tanks, which are used to address short-term shortages and peak loads. The adoption of the various technologies to achieve the above purposes was constrained by the fact that there was no isolated technology that could enable agricultural producers to achieve zero energy, zero emissions, and optimal resource utilization in the short term. Future research studies should establish whether it is economical for large agricultural companies to install smart glass systems and infrastructure for slow fertilizer release and carbon capture in greenhouse structures to offset the carbon footprint.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference282 articles.

1. Optimization-assisted water supplement mechanism with energy efficiency in IoT based greenhouse;Khudoyberdiev;J. Intell. Fuzzy Syst.,2021

2. Bersani, C., Ouammi, A., Sacile, R., and Zero, E. (2020). Model predictive control of smart greenhouses as the path towards near zero energy consumption. Energies, 13.

3. Baudoin, W., Nono-Womdim, R., Lutaladio, N., Hodder, A., Castilla, N., Leonardi, C., De Pascale, S., Qaryouti, M., and Duffy, R. (2013). Good Agricultural Practices for Greenhouse Vegetable Crops: Principles for Mediterranean Climate Areas, Food and Agriculture Organization. Available online: https://www.fao.org/3/i3284e/i3284e.pdf.

4. Gołasa, P., Wysokiński, M., Bieńkowska-Gołasa, W., Gradziuk, P., Golonko, M., Gradziuk, B., Siedlecka, A., and Gromada, A. (2021). Sources of greenhouse gas emissions in agriculture, with particular emphasis on emissions from energy used. Energies, 14.

5. Building-integrated greenhouses raise energy co-benefits through active ventilation systems;Royapoor;Build. Environ.,2022

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3