Turbine-Based Generation in Greenhouse Irrigation Systems

Author:

Rodríguez-Pérez Ángel M.12ORCID,García-Chica Antonio1,Caparros-Mancera Julio J.2ORCID,Rodríguez César A.2ORCID

Affiliation:

1. Department of Engineering, University of Almería, CIMEDES Research Center (CeiA3), 04120 Almería, Spain

2. Department of Mining, Mechanical, Energy and Construction Engineering, University of Huelva, 21004 Huelva, Spain

Abstract

This study addresses the need for sustainable and energy-efficient agricultural practices by integrating turbine systems into greenhouse irrigation setups that utilize water from storage basins or ponds. The purpose is to harness excess pressure to generate electricity, enhancing overall system efficiency. This study involves designing a scalable turbine system that adapts to different greenhouse sizes and water pressure conditions. Key methods include a novel 3D design and implementation of a turbine outlet, using CAD modeling and high-precision 3D printing, and the experimental characterization of the system’s power–pressure relationship and pressure losses. Results demonstrate that a single Banki-type turbine generates nearly 12 W at a maximum pressure of 1.4 bar, 0.98 m3/h of flow, pressure 92% loss performance, and 32% efficiency. Scalability tests in the study case reveal that up to eight turbines can be installed in series without dropping below the critical pressure threshold, that is, above 0.6–0.7 bar, the minimum pressure expected for adequate irrigation, and the turbines collectively produce around 60 W, considering the pressure losses with respect to production. These findings confirm the system’s potential to enhance sustainability and energy efficiency in greenhouse operations. This study lays a foundation for future research to optimize 3D-printed components, integrate renewable energy sources, and conduct long-term performance studies, aiming to further improve the system’s applicability and performance in agricultural settings.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3