An ANN-PSO-Based Method for Optimizing Agricultural Tractors in Field Operation for Emission Reduction

Author:

Zheng Bowen,Song Zhenghe,Mao Enrong,Zhou QuanORCID,Luo Zhenhao,Deng Zhichao,Shao Xuedong,Liu Yuxi

Abstract

Aiming at the serious problem of agricultural tractor emission pollution, especially the limitation of nitrogen dioxide (NOx) and soot emissions, we took an agricultural diesel engine as the research object, and a diesel engine combustion chamber model was established for both simulated calculations and experimental verification analysis. The in-cylinder pressure and heat release obtained from the combustion chamber model simulation calculations were within 6% error of the experimental data. The overall trend of change was basically consistent. The established model can simulate the working conditions of the experimental engine relatively well. An artificial neural network (ANN) was also established as an agent model based on the indentation rate, tab depth, and combustion chamber depth as the input, and NOx and soot as the output. The decision coefficients of the ANN model were R2 = 0.95 and 0.93, with corresponding Mean Relative Error (MRE) values of 10.13 and 8.18%, respectively, which are within the generally required interval, indicating that the obtained ANN model has good adaptability and accuracy. On the basis of the general particle swarm optimization (PSO) algorithm, an improved PSO algorithm was proposed, in which the inertia factor is continuously adjusted with the help of the skip line function in the optimization process so that the inertia factor adapts to different rates and adjusts the magnitude of the corresponding values in different periods. The improved PSO algorithm was used to optimize the optimal input parameter matching of the agent model to form a new combustion chamber structure, which was imported into CONVERGE CFD software for emission simulation and comparison with the emissions of the original combustion chamber. It was found that the NOx reduction was about 1.21 g·(kW·h)−1, and the soot reduction was about 0.06 g·(kW·h)−1 with the new combustion chamber structure. The ANN + PSO optimization method proved to be effective in reducing the NOx and soot emissions of diesel engine pollutants, and it may also provide a reference and ideas for the design and development of relevant agricultural engine combustion chamber systems.

Funder

National Key Research and Development Plan of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference37 articles.

1. China Statistical Yearbook;National Bureau of Statistics,2021

2. Study on technical routes to achieve standards of emission stage III for non-road diesel engine;Bai;J. Chin. Agric. Mech.,2015

3. Development and Prospect of Key Technologies on Agricultural Tractor;Xie;Trans. Chin. Soc. Agric. Mach.,2018

4. Progress of control technologies on exhaust emissions for agricultural machinery;Tan;Trans. Chin. Soc. Agric. Mach.,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3