Potato Visual Navigation Line Detection Based on Deep Learning and Feature Midpoint Adaptation

Author:

Yang Ranbing,Zhai YumingORCID,Zhang Jian,Zhang Huan,Tian Guangbo,Zhang Jian,Huang Peichen,Li Lin

Abstract

Potato machinery has become more intelligent thanks to advancements in autonomous navigation technology. The effect of crop row segmentation directly affects the subsequent extraction work, which is an important part of navigation line detection. However, the shape differences of crops in different growth periods often lead to poor image segmentation. In addition, noise such as field weeds and light also affect it, and these problems are difficult to address using traditional threshold segmentation methods. To this end, this paper proposes an end-to-end potato crop row detection method. The first step is to replace the original U-Net’s backbone feature extraction structure with VGG16 to segment the potato crop rows. Secondly, a fitting method of feature midpoint adaptation is proposed, which can realize the adaptive adjustment of the vision navigation line position according to the growth shape of a potato. The results show that the method used in this paper has strong robustness and can accurately detect navigation lines in different potato growth periods. Furthermore, compared with the original U-Net model, the crop row segmentation accuracy is improved by 3%, and the average deviation of the fitted navigation lines is 2.16°, which is superior to the traditional visual guidance method.

Funder

Special Project for the Construction of Modern Agricultural Industry Technology System

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference44 articles.

1. World Population Prospects: The 2012 Revision,2013

2. The Mechanism and Parameter Optimization of the Key Device of Pneumatic Precision Seeding of Potatoes;Lu;Ph.D. Thesis,2020

3. Multi-crop-row detection algorithm based on binocular vision

4. Research on Stubble Avoidance Technology of No-Till Planter Based on Machine Vision;Chen;Ph.D. Thesis,2018

5. Machine vision for orchard navigation

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3