Algorithm for Corn Crop Row Recognition during Different Growth Stages Based on ST-YOLOv8s Network

Author:

Diao Zhihua1ORCID,Ma Shushuai1,Zhang Dongyan2ORCID,Zhang Jingcheng3ORCID,Guo Peiliang1,He Zhendong1ORCID,Zhao Suna1,Zhang Baohua4ORCID

Affiliation:

1. College of Electrical Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China

2. College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China

3. School of Automation, Hangzhou Dianzi University, Hangzhou 310000, China

4. College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 211800, China

Abstract

Corn crop row recognition during different growth stages is a major difficulty faced by the current development of visual navigation technology for agricultural robots. In order to solve this problem, an algorithm for recognizing corn crop rows during different growth stages is presented based on the ST-YOLOv8s network. Firstly, a dataset of corn crop rows during different growth stages, including the seedling stage and mid-growth stage, is constructed in this paper; secondly, an improved YOLOv8s network, in which the backbone network is replaced by the swin transformer (ST), is proposed in this paper for detecting corn crop row segments; after that, an improved supergreen method is introduced in this paper, and the segmentation of crop rows and background within the detection frame is achieved utilizing the enhanced method; finally, the corn crop row lines are identified using the proposed local–global detection method, which detects the local crop rows first, and then detects the global crop rows. The corn crop row segment detection experiments show that the mean average precision (MAP) of the ST-YOLOv8s network during different growth stages increases by 7.34%, 11.92%, and 4.03% on average compared to the MAP of YOLOv5s, YOLOv7, and YOLOv8s networks, respectively, indicating that the ST-YOLOv8s network has a better crop row segment detection effect compared to the comparison networks. Corn crop row line detection experiments show that the accuracy of the local–global detection method proposed in this paper is improved by 17.38%, 10.47%, and 5.99%, respectively, compared with the accuracy of the comparison method; the average angle error is reduced by 3.78°, 1.61°, and 0.7°, respectively, compared with the average angle error of the comparison method; and the average fitting time is reduced by 5.30 ms, 18 ms, and 33.77 ms, respectively, compared with the average fitting time of the comparison method, indicating that the local–global detection method has a better crop row line detection effect compared to the comparison method. In summary, the corn crop row recognition algorithm proposed in this paper can well accomplish the task of corn crop row recognition during different growth stages and contribute to the development of crop row detection technology.

Funder

Department of Science and Technology of Henan Province

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3