Collaboration among Governments, Pesticide Operators, and Farmers in Regulating Pesticide Operations for Agricultural Product Safety

Author:

Gong Jing1,Du Hongyan1,Sun Yong2ORCID

Affiliation:

1. Institute of Data Science and Agricultural Economics, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

2. School of Public Administration, Guangzhou University, Guangzhou 510006, China

Abstract

The regulation of pesticide operations still faces numerous challenges and issues. Conflicts of interest and power struggles among the government, pesticide operators, and farmers are crucial factors that impact the effectiveness of regulation. To enhance efficiency and ensure the quality and safety of agricultural products through stakeholder cooperation, this paper presents a dynamic evolution model based on the theory of evolutionary games. The model incorporates the government, pesticide operators, and farmers and evaluates the stability and effectiveness of the stakeholder cooperation mechanism under different circumstances. The research findings indicate the following: The relationships between the government, pesticide-operating enterprises, and farmers are characterized by intricate dynamics of cooperation and competition, coordination and contradiction, reciprocity, and mutual detriment. The stability and effectiveness of the stakeholder cooperation mechanism vary depending on different parameters. Several factors influence the stability of the stakeholder cooperation mechanism, with regulatory supervision from the government, stringent penalties for non-compliant pesticide operations, and strong incentives for farmers’ oversight being the most significant. The stakeholder cooperation mechanism can establish an evolutionary stabilization strategy when these factors reach a certain threshold. This study contributes to understanding the operational mechanisms of stakeholder cooperation in pesticide operation regulation and offers decision support and policy recommendations to relevant stakeholders for advancing the sustainable development and optimization of pesticide operation regulation.

Funder

Collaborative Innovation Platform Construction Project of Beijing Academy of Agriculture and Forestry Sciences

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3