Research and Design of Improved Wild Horse Optimizer-Optimized Fuzzy Neural Network PID Control Strategy for EC Regulation of Cotton Field Water and Fertilizer Systems

Author:

Wang Hao1,Zhang Lixin12,Wang Huan1,Hu Xue1,Zhao Jiawei1,Zhu Fenglei1,Wu Xun1

Affiliation:

1. College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China

2. Bingtuan Energy Development Institute, Shihezi University, Shihezi 832003, China

Abstract

Xinjiang is the largest cotton-producing region in China, but it faces a severe shortage of water resources. According to relevant studies, the cotton yield does not significantly decrease under appropriate limited water conditions. Therefore, this paper proposes a water and fertilizer integrated control system to achieve water and fertilizer conservation in the process of cotton field cultivation. This paper designs a fuzzy neural network Proportional–Integral–Derivative controller based on the improved Wild Horse Optimizer to address the water and fertilizer integrated control system’s time-varying, lag, and non-linear characteristics. The controller precisely controls fertilizer electrical conductivity (EC) by optimizing parameters through an improved Wild Horse Optimizer for the initial weights from the normalization layer to the output layer, the initial center values of membership functions, and the initial base width of membership functions in the fuzzy neural network. The performance of the controller is validated through MATLAB simulation and experimental tests. The results indicate that, compared with conventional PID controllers and fuzzy PID controllers, this controller exhibits excellent control accuracy and robustness, effectively achieving precise fertilization.

Funder

National Key R&D Program of China

Major Science and Technology Projects in Xinjiang Uygur Autonomous Region

Xinjiang Agricultural Machinery Research, Development, Manufacturing and Promotion Application Integration Project

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3