Optimizing Sustainability in Malting Barley: A Practical Approach to Nitrogen Management for Enhanced Environmental, Agronomic, and Economic Benefits

Author:

Vahamidis Petros1ORCID,Stefopoulou Angeliki2,Kotoulas Vassilis3

Affiliation:

1. Directorate of Plant Production Protection, Hellenic Ministry of Rural Development and Food, 150 Syngrou Avenue, 176 71 Kallithea, Greece

2. Financial Audit Committee, General Accounting Office, Hellenic Ministry of Economy and Finance, 57 Panepistimiou Avenue, 105 64 Athens, Greece

3. Athenian Brewery S.A, 102 Kifissos Avenue, 102 10 Athens, Greece

Abstract

Nitrogen (N) fertilisers used in barley production serve as the primary contributors to total greenhouse gas (GHG) emissions. Consequently, to lower the carbon footprint (CF) and GHG emissions, it is imperative to either reduce N fertiliser rates or enhance grain yield and improve nitrogen use efficiency (NUE). To address this challenge, we combined two strategies related to N: (1) a 34% reduction in the total N rate compared to the control (total N rate 108–110 kg N ha−1), and (2) testing two types of N fertilisers for topdressing against the control (common sulfur urea). These types included (a) a mixture comprising controlled-release fertiliser (CRF) combined with ammonium sulfate nitrate fertiliser in a 40:60 ratio (CRF + Nitro) and (b) ammonium sulfate nitrate (Nitro). Experiments were conducted in two distinct areas of Greece specialising in cereal production, aiming to unveil the effects of these strategies on all sustainability aspects of malting barley production. The results showed that although a 34% reduction in N rate did not result in yield penalties or a decrease in grain size, it did have a negative impact on grain protein content (GPC). CRF + Nitro not only reduced CF by approximately 30% compared to the control but also increased N agronomic efficiency by 51.5% and net profit by 7.1%. Additionally, it was demonstrated that the maximum achievable reduction in total GHG emissions and CF, by excluding N fertilisation from the crop system, ranged from 68.5% to 74.3% for GHG emissions and 53.8% to 67.1% for CF.

Funder

Athenian Brewery S.A.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3