Cooperative Fermentation Using Multiple Microorganisms and Enzymes Potentially Enhances the Nutritional Value of Spent Mushroom Substrate

Author:

Zhang Anrong1,He Weizhao1,Han Yunsheng1,Zheng Aijuan1,Chen Zhimin1,Meng Kun1,Yang Peilong1,Liu Guohua1ORCID

Affiliation:

1. Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China

Abstract

Large amounts of spent mushroom substrate (SMS) are produced globally, but their utilization efficiency is low, which leads to negative environmental impacts, such as water, soil, and air pollution. SMS contains nutrients, such as cell proteins, with a potential application in animal feed. However, the lignocellulose in SMS restricts animal digestion and absorption, thus hindering its application in animal nutrition. We investigated the potential of cellulase, xylanase, β-galactosidase, and a variety of microorganisms to optimize the conditions for reducing sugars’ (RS) production and the degradation rate of neutral detergent fibers. The results showed that the optimum proportion of multiple enzymes for glucose production of up to 210.89 mg/g were 10% cellulase, 10% xylanase, and 2% β -galactosidase, at 50 °C and 60% moisture for a 20 h hydrolysis duration. To enhance the optimal enzymolysis combination, co-fermentation experiments with multiple microorganisms and enzymes showed that inoculation with 10% Bacillus subtilis, 2% Pediococcus acidilactici, and 2% Saccharomyces cerevisiae, in combination with 10% cellulase, 10% xylanase, 2% β-galactosidase, and 1% urea, at 36.8°C and 59% moisture for 70 h hydrolysis, could lead to a 23.69% degradation rate of the neutral detergent fiber. This process significantly increased the degradation rate of the neutral detergent fiber and the nutrient content of Pleurotus eryngii compared to the initial fermentation conditions. Overall, our study generated optimal co-fermentation conditions for bacteria and enzymes and provides a practical reference for biological feed synthesis using P. eryngii spent mushroom substrate.

Funder

National Key Research and Development Program of China

Hebei Province Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3