Biogas Production from Anaerobic Co-Digestion of Spent Mushroom Substrate with Different Livestock Manure

Author:

Gao XionghuiORCID,Tang Xiaoyu,Zhao Kunyang,Balan VenkateshORCID,Zhu Qili

Abstract

Spent mushroom substrate (SMS) is defined as the biomass waste generated during industrial mushroom cultivation. Utilization of SMS has been extensively researched and has immense potential as a sustainable substrate for generating biogas that can offset fossil fuel use. This closed loop energy generation process that can be set up in mushroom plants will reduce the dependence on fossil fuels and has the potential to reduce greenhouse gas emissions, which will benefit the environment. Anaerobic co-digestion of SMS with different agricultural wastes such as livestock manure would result in enhanced biogas production. In this study, the anaerobic co-digestion of SMS was carried out by combing yellow back fungus SMS along with chicken, dairy and pig manure. SMS combined with chicken manure yielded a slightly higher cumulative methane yield when compared with the combination of dairy manure and pig manure. Factors such as the total solids (TS) and the relative ratio of manure to SMS loading had a significant impact on the cumulative methane yield, volatile solids removal, with a particularly prominent synergistic effect. The synergistic effect was also closely related to the C/N ratio, and under experimental conditions (TS = 15%, SMS relative ratio of 50% and C/N ratio = 25.6), the cumulative methane yield of SMS with chicken manure (CM) was increased by 414% compared with that obtained using SMS or CM separately. We carried out a multiple linear regression (MLR) analysis, a statistical technique that uses several explanatory variables to predict the outcome of a response variable. Our analysis concluded that by using operating conditions (TS = 15%, and SMS ratio = 38.9), we were able to achieve the maximum cumulative methane yield (CMY).

Funder

Department of Science and Technology of Sichuan Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3