Modeling and Optimizing the Performance of Green Forage Maize Harvester Header Using a Combined Response Surface Methodology–Artificial Neural Network Approach

Author:

Xue Zhao12ORCID,Fu Jun12ORCID,Fu Qiankun12,Li Xiaokang3,Chen Zhi4

Affiliation:

1. College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China

2. Key Laboratory of Efficient Sowing and Harvesting Equipment, Ministry of Agriculture and Rural Affairs, Jilin University, Changchun 130022, China

3. Gansu Academy of Mechanical Sciences Co., Ltd., Lanzhou 730030, China

4. Chinese Academy of Agricultural Mechanization Sciences, Beijing 100083, China

Abstract

Green forage maize harvesters face challenges such as high soil humidity and soft soil in the field, mismatched working parameters, and poor reliability and adaptability. These challenges often result in header blockage, significant harvest loss, and increased energy consumption. Traditional testing and statistical analysis methods used in most existing studies are limited by complex test processes, their time-consuming nature, high costs, and poor prediction accuracy. To address these problems, a test bench was constructed to analyze the effects of forward speed, cutting height, number of rows, and their interactions on specific energy consumption and harvest loss of the green forage maize (GFM) header. A combined response surface method (RSM)–artificial neural network (ANN) approach is proposed for modeling and predicting the performance parameters of the header. The optimal conditions were determined by optimizing the specific energy consumption and loss rate. The optimal combination parameters are a forward speed of 1.6 km/h, a cutting height of 167 mm, and a number of rows of 4. However, RSM–ANN has larger R2 values and lower root mean square errors (RMSE) and mean square errors (MSE) compared to RSM. Specifically, the R2 of the RSM–ANN model for specific energy consumption and loss rate a 0.9925 and 0.9906, MSE are 0.00001775 and 0.004558, and RMSE are 0.004214 and 0.006752, respectively. The results show that the combined RSM–ANN method has higher precision and accuracy and can better predict and optimize the header performance. This study overcomes the limitations of traditional methods and has the potential to provide data and method references for the design, optimization, prediction, and intelligent diagnosis of faults in the operational parameters of agricultural machinery.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3