Advancing Early Fault Diagnosis for Multi-Domain Agricultural Machinery Rolling Bearings through Data Enhancement

Author:

Xie Fengyun12,Li Gang1,Liu Hui1,Sun Enguang1,Wang Yang1

Affiliation:

1. School of Mechanical Electrical and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China

2. State Key Laboratory of Performance Monitoring Protecting of Rail Transit Infrastructure, East China Jiaotong University, Nanchang 330013, China

Abstract

In the context of addressing the challenge posed by limited fault samples in agricultural machinery rolling bearings, especially when early fault characteristics are subtle, this study introduces a novel approach. The proposed multi-domain fault diagnosis method, anchored in data augmentation, aims to discern early faults in agricultural machinery rolling bearings, particularly within an imbalanced sample framework. The methodology involves determining early fault signals throughout the life cycle, constructing early fault datasets with varying imbalance rates for different fault types, and subsequently employing the Synthetic Minority Oversampling Technique (SMOTE) to balance the fault data. The study then extracts relative wavelet packet energy and time-domain sensitive features (variance, peak to peak) from the original and generated fault data to form a multi-domain fault feature vector. This vector is utilized for fault state recognition using a Support Vector Machine (SVM). Evaluation metrics such as accuracy, recall, and F1 values assess the recognition effectiveness for each rolling bearing state, with the overall model recognition evaluated based on accuracy. The proposed method is rigorously analyzed and validated using the XJTU-SY rolling bearing accelerated life test dataset. Comparative analysis is conducted with non-data enhanced fault feature vectors, specifically the relative energy of the wavelet packet, both with and without time-domain features. Experimental results underscore the superior performance of multi-domain fault features in providing a comprehensive description of signal information, leading to enhanced classification performance. Furthermore, the study demonstrates improved classification accuracy and recall rates for the balanced dataset compared to the imbalanced dataset. This research significantly contributes to an effective identification method for the early fault diagnosis of small sample rolling bearings in agricultural machinery.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Project of Jiangxi Provincial Department of Education

Jiangxi Provincial Graduate Innovation Special Fund Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3