A Machine Learning-Based Assessment of Maize Silage Dry Matter Losses by Net-Bags Buried in Farm Bunker Silos

Author:

Segato SeverinoORCID,Marchesini GiorgioORCID,Magrin LuisaORCID,Contiero BarbaraORCID,Andrighetto IginoORCID,Serva LorenzoORCID

Abstract

Estimating the dry matter losses (DML) of whole-plant maize (WPM) silage is a priority for sustainable dairy and beef farming. The study aimed to assess this loss of nutrients by using net-bags (n = 36) filled with freshly chopped WPM forage and buried in bunker silos of 12 Italian dairy farms for an ensiling period of 275 days on average. The proximate composition of harvested WPM was submitted to mixed and polynomial regression models and a machine learning classification tree to estimate its ability to predict the WPM silage losses. Dry matter (DM), silage density, and porosity were also assessed. The WPM harvested at over 345 (g kg−1) and a DM density of less than 180 (kg of DM m−3) was related to DML values of over 7%. According to the results of the classification tree algorithm, the WPM harvested (g kg−1 DM) at aNDF higher than 373 and water-soluble carbohydrates lower than 104 preserves for the DML of maize silage. It is likely that the combination of these chemical variables determines the optimal maturity stage of WPM at harvest, allowing a biomass density and a fermentative pattern that limits the DML, especially during the ensiling period.

Funder

University of Padua

KWS Italia S.p.A.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3