North Expansion of Winter Wheat Planting Area in China under Different Emissions Scenarios

Author:

Wu Maowei,Xu Yang,Zheng Jingyun,Hao ZhixinORCID

Abstract

Suitable planting areas for winter wheat in north China are expected to shift northwardly due to climate change, however, increasing extreme events and the deficient water supply are threatening the security of planting systems. Thus, based on predicted climate data for 2021–2050 under the Shared Socioeconomic Pathways (SSP1-2.6, SSP3-7.0, and SSP5-8.5) emission scenarios, as well as historical data from 1961–1990, we use four critical parameters of percentages of extreme minimum temperature years (POEMTY), first day of the overwintering period (FD), sowing date (SD), and precipitation before winter (PBW), in order to determine the planting boundary of winter wheat. The results show that the frequency of extreme minimum temperature occurrences is expected to decrease in the North winter wheat area, which will result in a northward movement of the western part of northern boundary by 73, 94, and 114 km on average, in addition to FD delays ranging from 6.0 to 10.5 days. Moreover, agrometeorological conditions in the Huang-Huai winter wheat area are expected to exhibit more pronounced changes than the rest of the studied areas, especially near the southern boundary, which is expected to retreat by approximately 213, 215, and 233 km, northwardly. The north boundary is expected to move 90–140 km northward. Therefore, the change in southern and northern boundaries will lead the potential planting areas of the entire North winter wheat area to increase by 10,700 and 28,000 km2 on average in the SSP3-7.0 and SSP5-8.5 scenarios, respectively, but to decrease by 38,100 km2 in the SSP1-2.6 scenario; however, the lack of precipitation remains a limitation for extending planting areas in the future.

Funder

National Natural Science Foundation China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3