Physicochemical Variables Better Explain Changes in Microbial Community Structure and Abundance under Alternate Wetting and Drying Events

Author:

Abid Abbas Ali,Zou Xiang,Gong Longda,Castellano-Hinojosa Antonio,Afzal Muhammad,Di Hongjie,Zhang Qichun

Abstract

Soil microbial communities play an important role in nutrient cycling; however, their response under repeated long-term fertilization has attracted little attention and needs further appraisal. A 14-day incubation study compared the relative abundance, diversity, and composition of bacterial and fungal microbial communities in soils treated with long-term applications of chemical fertilizer (CF), pig manure plus chemical fertilizer (PMCF), and rice straw plus chemical fertilizer (SRCF) in a paddy field. A high-throughput sequencing approach was applied to assess the diversity and composition of microbial community. Results revealed the Shannon index of the bacterial community decreased with fertilizer addition but increased in case of fungal community. The abundance of the Actinobacteria was higher in the PMCF, while Proteobacteria were higher in the CF and SRCF treatments than those in the unamended control under alternate wetting and drying (AWD) and permanent flooding (PF). In addition, chemical fertilizer history increased the abundance of Firmicutes under AWD. Initially, Nitrospira were found higher in the unamended control than in the amended treatments, but an increase was observed with time in fertilized treatments. Among all genera, Proteobacteria were the most abundant bacterial genus. The main properties that markedly affected the bacterial communities were SOC (R2 = 0.4037, p < 0.02), available P (R2 = 0.3273, p < 0.05), and NO3− (R2 = 0.3096, p < 0.08). Soil physicochemical factors and biogenic factors explained a variation of 46.27% and 29.35%, respectively. At the same time, 4.59% was the combined effect of physicochemical and biogenic factors. Our results suggested that the physicochemical properties had a more significant impact on bacterial activities than water regime by increasing N and organic matter concentrations in the soils.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Development Program of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3