Effects of Intercropping, Nitrogen Fertilization and Corn Plant Density on Yield, Crude Protein Accumulation and Ensiling Characteristics of Silage Corn Interseeded into Alfalfa Stand

Author:

Xu Ruixuan,Zhao Haiming,You Yongliang,Wu Ruixin,Liu Guibo,Sun Zhiqiang,Bademuqiqige ,Zhang Yingjun

Abstract

Interseeding silage corn into an alfalfa stand following its spring harvests to produce mixed silage would feasibly break the restriction of alfalfa production during a hot-rainy summer. In this 2-yr experiment, the alfalfa–silage corn intercropping system (AC) with nitrogen (N) fertilization rates of 0, 60, 120, and 180 kg N ha−1 and corn plant densities of 30,000, 45,000, and 60,000 plants ha−1 was compared with the monocultured corn (CK) managed using the local farmers’ practice. Intercropping with alfalfa significantly decreased the dry matter (DM) yield of the corn by 31.5% on average, while increasing the N application rate and corn plant density promoted DM yield and crude protein (CP) accumulation of the intercropped corn, and the intercropping system could achieve the same CP yield as CK—it did in most cases. Although the DM contents, pH values, and NH3-N concentrations were decreased in the mixed silage, its fermentation quality was not reduced and the CP, water soluble carbohydrates, and lactic acid contents were dramatically increased by 16.3%, 17.8%, and 72.9% compared with those of CK, respectively. For the opposite effects of N fertilization and corn density on silage quality, the treatment combination with a medium corn density (45,000 plants ha−1) fertilized at a medium N rate (120 kg N ha−1) was evaluated as the optimum for more balanced system productivity, silage nutritive values and fermentative characteristics during the coexisting period.

Funder

China Agriculture Research System of MOF and MARA

China Scholarship Council

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3