LIFRNet: A Novel Lightweight Individual Fish Recognition Method Based on Deformable Convolution and Edge Feature Learning

Author:

Yin Jianhao,Wu Junfeng,Gao Chunqi,Jiang Zhongai

Abstract

With the continuous development of industrial aquaculture and artificial intelligence technology, the trend of the use of automation and intelligence in aquaculture is becoming more and more obvious, and the speed of the related technical development is becoming faster and faster. Individual fish recognition could provide key technical support for fish growth monitoring, bait feeding and density estimation, and also provide strong data support for fish precision farming. However, individual fish recognition faces significant hurdles due to the underwater environment complexity, high visual similarity of individual fish and the real-time aspect of the process. In particular, the complex and changeable underwater environment makes it extremely difficult to detect individual fish and extract biological features extraction. In view of the above problems, this paper proposes an individual fish recognition method based on lightweight convolutional neural network (LIFRNet). This proposed method could extract the visual features of underwater moving fish accurately and efficiently and give each fish unique identity recognition information. The method proposed in this paper consists of three parts: the underwater fish detection module, underwater individual fish recognition module and result visualization module. In order to improve the accuracy and real-time availability of recognition, this paper proposes a lightweight backbone network for fish visual feature extraction. This research constructed a dataset for individual fish recognition (DlouFish), and the fish in dataset were manually sorted and labeled. The dataset contains 6950 picture information instances of 384 individual fish. In this research, simulation experiments were carried out on the DlouFish dataset. Compared with YOLOV4-Tiny and YOLOV4, the accuracy of the proposed method in fish detection was increased by 5.12% and 3.65%, respectively. Additionally, the accuracy of individual fish recognition reached 97.8%.

Funder

Key Research Projects in Liaoning Province

National Natural Science Foundation of China

Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3