A novel fish individual recognition method for precision farming based on knowledge distillation strategy and the range of the receptive field

Author:

Yin Jianhao123,Wu Junfeng123ORCID,Gao Chunqi123,Yu Hong123,Liu Liang123,Guo Shihao123

Affiliation:

1. College of Information Engineering Dalian Ocean University Dalian China

2. Dalian Key Laboratory of Smart Fisheries Dalian Ocean University Dalian China

3. Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education Dalian Ocean University Dalian China

Abstract

AbstractWith the continuous development of green and high‐quality aquaculture technology, the process of industrialized aquaculture has been promoted. Automation, intelligence, and precision have become the future development trend of the aquaculture industry. Fish individual recognition can further distinguish fish individuals based on the determination of fish categories, providing basic support for fish disease analysis, bait feeding, and precision aquaculture. However, the high similarity of fish individuals and the complexity of the underwater environment presents great challenges to fish individual recognition. To address these problems, we propose a novel fish individual recognition method for precision farming that rethinks the knowledge distillation strategy and the chunking method in the vision transformer. The method uses the traditional convolutional neural network model as the teacher model, introducing the teacher token to guide the student model to learn the fish texture features. We propose stride patch embedding to expand the range of the receptive field, thus enhancing the local continuity of the image, and self‐attention‐pruning to discard unimportant tokens and reduce the model computation. The experimental results on the DlouFish dataset show that the proposed method in this paper improves accuracy by 3.25% compared to ECA Resnet152, with an accuracy of 93.19%, and also outperforms other vision transformer models.

Funder

National Key Research and Development Program of China

Key Laboratory of Industrial Internet of Things and Networked Control, Ministry of Education

Natural Science Foundation of Liaoning Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3