Classification of Maize Lodging Extents Using Deep Learning Algorithms by UAV-Based RGB and Multispectral Images

Author:

Yang XinORCID,Gao Shichen,Sun QianORCID,Gu XiaoheORCID,Chen Tianen,Zhou Jingping,Pan Yuchun

Abstract

Lodging depresses the grain yield and quality of maize crop. Previous machine learning methods are used to classify crop lodging extents through visual interpretation and sensitive features extraction manually, which are cost-intensive, subjective and inefficient. The analysis on the accuracy of subdivision categories is insufficient for multi-grade crop lodging. In this study, a classification method of maize lodging extents was proposed based on deep learning algorithms and unmanned aerial vehicle (UAV) RGB and multispectral images. The characteristic variation of three lodging extents in RGB and multispectral images were analyzed. The VGG-16, Inception-V3 and ResNet-50 algorithms were trained and compared depending on classification accuracy and Kappa coefficient. The results showed that the more severe the lodging, the higher the intensity value and spectral reflectance of RGB and multispectral image. The reflectance variation in red edge band were more evident than that in visible band with different lodging extents. The classification performance using multispectral images was better than that of RGB images in various lodging extents. The test accuracies of three deep learning algorithms in non-lodging based on RGB images were high, i.e., over 90%, but the classification performance between moderate lodging and severe lodging needed to be improved. The test accuracy of ResNet-50 was 96.32% with Kappa coefficients of 0.9551 by using multispectral images, which was superior to VGG-16 and Inception-V3, and the accuracies of ResNet-50 on each lodging subdivision category all reached 96%. The ResNet-50 algorithm of deep learning combined with multispectral images can realize accurate lodging classification to promote post-stress field management and production assessment.

Funder

the National Key Research and Development Program of China

Beijing Talents Project

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3